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ABSTRACT
In the process of visual perception, humans perceive not only the
appearance of objects existing in a place but also their relationships
(e.g. spatial layout). However, the dominant works on visual place
recognition are always based on the assumption that two images
depict the same place if they contain enough similar objects, while
the relation information is neglected. In this paper, we propose a
regional relation module which models the regional relationships
and converts the convolutional feature maps to the relational fea-
ture maps. We further design a cascaded pooling method to get
discriminative relation descriptors by preventing the influence of
confusing relations and preserving as much useful information as
possible. Extensive experiments on two place recognition bench-
marks demonstrate that trainingwith the proposed regional relation
module improves the appearance descriptors and the relation de-
scriptors are complementary to appearance descriptors.When these
two kinds of descriptors are concatenated together, the resulting
combined descriptors outperform the state-of-the-art methods.
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1 INTRODUCTION
In this paper, we tackle the Visual Place Recognition (VPR) task
which has consistently attracted considerable attention in computer
vision [2, 4, 8, 56] and robotics communities [9, 10, 35, 60]. VPR
is traditionally cast as a large-scale image retrieval problem [62]
and the goal is to localize query images by searching a large geo-
tagged database. Essentially, VPR requires discriminative image
embedding to encode the geo-informative objects characterizing a
place. In the urban environment, however, buildings with repetitive
architecture and the confusing objects such as cars and pedestrians
degrade the image representations. The appearance of a place may
also change dramatically with the variances of viewpoint, season
and illumination condition. Thus VPR is a very challenging task.

Early VPR works [4, 22, 26, 53, 56] are mostly based on the clas-
sical image retrieval methods such as bag-of-visual-words model
[49] and VLAD descriptors [21] to enable robust place recognition.
Arandjelović et al. [2] incorporate VLAD coding with differentiable
operations in the deep convolutional neural network (CNN) archi-
tecture, and the proposed NetVLAD descriptors show powerful
representative ability on VPR and image retrieval datasets. The
Contextual Re-weighting Networks (CRN) [24] were proposed to
alleviate the influence of confusing objects for the NetVLAD de-
scriptors. The attention-based pyramid aggregation network [63]
sum-aggregates attentive region features to overcome the influence
of repetitive building architecture and confusing objects. Although
effective, these works regard the objects in an image as separate
and aggregate them in an orderless manner, while the relations be-
tween objects are lost. The loss of relations comes mainly from two
aspects. First, the local handcrafted features [7, 33] or CNN features
are inefficient to model the object relations. Second, the orderless
characteristic of their aggregation methods (e.g. Sum-aggregation
is most commonly) discards spatial relation information.

Essentially, the similarity comparison of global image represen-
tations is equivalent to the matching of local features [50, 51], and
different aggregation methods (e.g. NetVLAD or APANet) define
different matching strategies. As shown in Figure 1, two images at
different places contain four buildings similar to each other. Tradi-
tional image retrieval methods compare the similarity of the objects
in two images, and these two images may have considerable simi-
larity and be falsely matched to the same place. But when we take
the spatial relation into consideration (e.g. building A is close to B
and E, while C is far from D and there is no E around it), we can
easily recognize they are not in the same place. As is often the case
in the urban environment, buildings are similar at different places.
Moreover, the appearance of buildings may change dramatically
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Figure 1: Motivation of ourmethod. The first row shows two
images from Tokyo 24/7 dataset at different places but hav-
ing similar buildings. The second row describes the similar-
ity comparison (red dashed line) of two images and the re-
lation information (blue dashed line) between objects. Two
images might get considerable similarity and be falsely
matched when only the building appearance is considered.
But when the relationships between buildings are consid-
ered, the similarity becomes very low.

with times and illumination conditions, while the visual relation-
ships between buildings won’t change much under these variances,
thus they can serve as robust cues for place recognition.

Our work is based on the regional pooling methods [15, 52, 63]
which show competitive performance in image retrieval task and
inspired by the relationship modeling framework which is widely
adopted in the Visual Relation Detection (VRD) task [11, 34, 59].
We propose a regional relation module to imitate the relationship
modeling process in VRD task and implicitly model the regional re-
lation information without any supervision on objects, object pairs
or object relationships. As shown in Figure 2, we adopt the spatial
grids of pyramid pooling to define regions and model “all-to-all”
region-pairs relations by the relation module. The regional relation
module generates relation features of all region-pairs and converts
the Convolutional Feature Maps (C-FM) to Relational Feature Maps
(R-FM), which contain high-level information about object rela-
tions. Further on, we design a cascaded pooling method, consisting
of K-Max pooling at row-wise and sum pooling, to effectively ag-
gregate the R-FM and get the global relation descriptors.

In summary, our contributions are threefold.
• First, we consider the visual relationship as a robust cue for
VPR and propose a regional relation module to model the re-
lation information between regions. The generated relation
features can be aggregated by traditional aggregation meth-
ods and provide a more reasonable matching assumption
than convolutional features for image retrieval task.

• Second, we design a cascaded pooling method to get compact
and discriminative relation descriptors. The cascaded pool-
ing method consistently outperforms the commonly used
pooling methods for aggregating the R-FM.

• Third, the proposed relation descriptors are complementary
to the traditional appearance descriptors. When concate-
nating them together, the resulting combined descriptors
outperform state-of-the-art works on two place recognition
benchmarks.

2 RELATEDWORK
2.1 Image retrieval-based place recognition
In this paper, we consider the image retrieval-based visual place
recognition (VPR) task, which has been widely studied in the com-
puter vision community and is different from some related but not
identical works such as the classification-based [17, 46] and 2D-
3D matching-based localization task [31, 44]. Traditionally, VPR
works adopt generic image retrieval methods such as bag-of-visual-
words model [49], VLAD descriptors [21], region features [52], and
incorporate the discovering of distinctive or confusing features
[4, 22, 26, 63], analysis of repetitive architectures [55, 56] and view-
point changes [53, 54].

Based on the CNN architecture, NetVLAD descriptors [2] were
proposed and end-to-end trained on the Google Street View datasets
for efficient place recognition. The Contextual Re-weighting Net-
works (CRN) [24] were proposed to alleviate the influence of con-
fusing objects for the NetVLAD descriptors. For the same purpose,
Attention-based Pyramid Aggregation Networks (APANet) [63]
re-weight region features with attention block to improve the dis-
crimination of regional pooling method [14, 52]. However, all these
works ignore the relations between objects in an image. Spatial
matching [38, 47] is a classical method to verify the spatial config-
urations of local features for image retrieval. But the recent deep
local-feature based methods [36, 47] are usually two-stage and
cause additional memory and computation overhead after training
the retrieval network. Different from these works, we model re-
gional relations in an end-to-end training architecture. We propose
a regional relation module which converts the region features to re-
lation features with high-level information about regions and their
relations. The relation features can be aggregated by commonly-
used aggregation methods and show excellent performance.

2.2 Visual relational reasoning
Facilitated by the maturity of visual recognition tasks [18, 41], high-
level visual relational reasoning tasks such as visual relation de-
tection (VRD) [11, 30, 34] and visual question answering (VQA)
[1, 16, 23] are extensively studied recently. The neural network
architecture is hard to model relations itself, so the Gated Graph
Sequence Neural Networks [29], Interaction Networks [6], Non-
local Neural Network [57] and Relation Networks (RN) [19, 43]
are proposed to enable relation-centric computation. Among these
works, RN is a simple, plug-and-play module for effective relational
reasoning and shows super-human performance on VQA task.

The design of our regional relation module is inspired by the
VRD works and somewhat similar to RN, and the differences are
mainly in two aspects. First, we aim to retrieve the place of an im-
age rather than explicitly predict the relationships, and the relation
information is implicitly included in our relation descriptor as a
robust cue. Second, RN models the relation of local CNN features
while our regional relation module models the regional relation,
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Figure 2: Illustration of our network architecture for regional relation modeling. Regional relation module models regional
relations and converts the convolutional featuremaps to relational featuremaps. The cascaded poolingmethod is proposed to
aggregate the relational feature maps and get a global relation descriptor. Row-wise KMP denotes K-Max pooling at row-wise
as described in Section 4.2.

which is computation effective and feasible for images with differ-
ent resolutions in image retrieval datasets. Compared to RN, we
further design a cascaded pooling method to effectively aggregate
the relational feature maps.

3 PRELIMINARY
Before we describe the proposed regional relation module and the
cascaded pooling method (Section 4), we first briefly introduce
the matching assumption of traditional image retrieval methods
(Section 3.1) and the commonly-used visual relationship modeling
framework which inspires our work (Section 3.2).

3.1 Traditional matching assumption
In this subsection, we focus on the popular aggregation methods
[2, 5, 52] based on the deep CNN features and their underlying
matching strategies for image retrieval task. The commonly used
sum pooling method [5] sum-aggregates local CNN features to a
global descriptor as formulated:

𝐹𝑠 (𝐼 ) =
𝐻∑
𝑦=1

𝑊∑
𝑥=1

𝑓𝑥,𝑦, (1)

in which𝐻,𝑊 are spatial size of the CNN feature maps (C-FM) gen-
erated from image 𝐼 , 𝑓 is local features on the C-FM. The similarity
comparison of two global image descriptors is equal to:

⟨𝐹𝑠 (𝐼1), 𝐹𝑠 (𝐼2)⟩ =
∑
𝑓𝑖 ∈𝐼1

∑
𝑓𝑗 ∈𝐼2

〈
𝑓𝑖 , 𝑓𝑗

〉
, (2)

where ⟨, ⟩ denotes inner product operation. It can be seen that
sum pooling provides an “all-to-all” matching kernel, where the
similarity comparison of two global descriptors corresponds to the
cross-matching of all local features.

Similarly, region-based pooling methods, such as R-MAC [52]
and APANet [63], measure the “all-to-all” similarities of region
features. The matching strategy of global max pooling is based
on the comparison of maximum activation at each channel on the
featuremaps [50], and VLAD is based on a selectivematching kernel
as described in [3, 51]. It is intuitive that these aggregation methods
endow the aggregated descriptors with invariance to scaling and
translation by discarding the spatial information. But the local CNN

features or region features themselves are inefficient to model the
object relations, therefore the relation information in an image is
greatly discarded.

In summary, the matching assumption of existing works can be
outlined as two images are matching each other if they contain
enough similar objects, no matter how these objects are spatially
arranged or what their relationships are. This assumption is dis-
tinct to human perception because human equally focus on the
relationships between objects in an image. In this paper, we aim
to model the relationships of region features and the matching of
the proposed relational region features provides a more reasonable
matching assumption.

3.2 Visual relationship modeling framework
Here we consider the visual relationship modeling (VRM) frame-
work [34, 59] which models objects and predicates separately. The
relationships in an image are <subject, predicate, object> triplets,
where the subject, object are objects in the image and predicate
describes their interaction, e.g. <Man, Hold, Baseball>. Usually the
objects in an image are first detected by a detector [41], then the
object pairs are constructed for predicate prediction. Supposing an
object pair (𝑜𝑖 , 𝑜 𝑗 ) is detected, the region of interest (ROI) features
are first concatenated (𝑓𝑜𝑖 , 𝑓𝑜 𝑗

) and passed to multilayer perceptron
(MLP) to get the relation feature. Then the relation feature is sent
to a soft-max classifier for predicting the predicate score. The 𝑟𝑡ℎ
predicate score is calculated by:

𝑆 (𝑖, 𝑗, 𝑟 ) =
exp(𝑤𝑇

𝑟 𝑀𝐿𝑃 (𝑓𝑜𝑖 , 𝑓𝑜 𝑗
))∑𝑃

𝑡=1 exp(𝑤𝑇
𝑡 𝑀𝐿𝑃 (𝑓𝑜𝑖 , 𝑓𝑜 𝑗

))
, (3)

where𝑤𝑇
𝑟 is the parameter of 𝑟𝑡ℎ category in the classifier, 𝑃 is the

number of predicate categories.
This framework is widely adopted in VRD, VQA tasks [43] and

some self-supervised learning works [12, 37] for relationship pre-
diction, and it also inspires us to model object relations in an image.
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4 METHOD
4.1 Regional relation module
4.1.1 Region features. For VPR datasets, there are only image-
level supervisions such as GPS coordinates, and no supervisions on
objects or relationships in the images are available. The reason is
that most of the object categories in PASCAL VOC [13] or the Visual
Genome [27] dataset, such as “person” and “bus”, are confusing
objects for recognizing place. The trained Faster-RCNN is not able
to detect the geo-informative buildings. So we define the notion
of objects and object pairs in a fully unsupervised way. We first
analogize the region features generated by pyramid pooling to the
object features in the VRM framework. As illustrated in Figure 2,
having C-FM with size of𝑊 ×𝐻 ×𝐷 from CNN’s last convolutional
layer, we adopt pyramid pooling with n-scale spatial grids to get N
region features. Specifically, we perform regional max pooling in
the spatial grids and adjacent regions in each spatial grid are 50%
overlapping. The size of pooling window is [⌈2 ×𝑊 /(𝑛 + 1)⌉, ⌈2 ×
𝐻/(𝑛 + 1)⌉], and the pooling stride is [⌈𝑊 /(𝑛 + 1)⌉, ⌈𝐻/(𝑛 + 1)⌉],
where ⌈⌉ is the ceiling function. In this way, 𝑛 × 𝑛 region features
can be obtained. The region feature set fΩ is formulated as follow:

fΩ = {𝑓𝑟,1 ...𝑓𝑟,𝑠21 ...𝑓𝑟,𝑁 }, with 𝑁 =

𝑛∑
𝑖=1

𝑠2𝑖 , (4)

where 𝑓𝑟, 𝑗 is the 𝑗𝑡ℎ region feature generated from the spatial grids,
and 𝑠𝑖 is the side length of 𝑖𝑡ℎ scale spatial grid. After that, we send
fΩ to the relation module for relation modeling.

4.1.2 Relation module. For regional relation modeling, We make a
hypothesis that every two regions have informative relations, and
we take the “all-to-all” regional relations into consideration. In this
way, we imitate the relationmodeling process of VRM framework by
a relation module, where the region features are concatenated each
other and their relationship are modeled by the MLP. Compared
with the CNN feature maps (C-FM), the obtained relational feature
maps (R-FM) contain higher-level object appearance information
and object relation information. As shown in Figure 2, having the
region feature set fΩ with size of 𝑁 × 𝐷 , we concatenate these
region features each other to get the region feature pairs with size
of 𝑁 × 𝑁 ×𝐶 (𝐶 = 2 ∗ 𝐷). Then 1 × 1 convolutional layers (MLP)
with shape preserving are applied to generate the relational feature
maps (R-FM), in which each relation feature 𝑓R𝑖,𝑗

is formulated as:

𝑓R𝑖,𝑗
= 𝑀𝐿𝑃 (𝑓𝑟,𝑖 , 𝑓𝑟, 𝑗 ). (5)

Then we adopt cascaded pooling to aggregate the R-FM and get
the global relation descriptor. The difference to VRM framework
exists that we aggregate the relation features for a discriminative
global descriptor rather than explicitly predict their relationships
with a classifier.

4.2 Cascaded pooling
The commonly used Global Max Pooling (GMP) or Global Average
Pooling (GAP, the same as sum pooling) can be used to aggregate
the R-FM for a global relation descriptor. But when the “all-to-all”
regional relations are taken into consideration, the R-FM contain
not only rich information but also a lot of noise, so it is inferior to

directly adopting GMP or GAP for aggregation. Additionally, con-
sidering the spatial characteristic of R-FM, we propose a cascaded
pooling method to preserve as much useful information as possible
and prevent the influence of confusing relations.

Note that the spatial characteristic of R-FM is quite different
from C-FM. As illustrated in Figure 2, the 𝑁 × 𝑁 relation features
in R-FM are pseudo-symmetric because the relation features sym-
metrical about the main diagonal represent relations of the same
two regions ((𝑟𝑖 , 𝑟 𝑗 ) or (𝑟 𝑗 , 𝑟𝑖 )), and the difference is their order.
Another spatial characteristic is that each row or column of the
𝑁 ×𝑁 relation features represents the relations of one region to all
regions. Considering these properties, we propose a two-step pool-
ing method, the cascaded pooling, which consists of K-Max pooling
at row-wise (similar to column-wise) and sum pooling for aggrega-
tion. K-Max pooling (KMP) selects 𝐾 strongest activations in the
given spatial size, and max pooling can be seen as a special case
of KMP when 𝐾 = 1. In cascaded pooling, KMP at row-wise gets
𝑁 × 𝐾 most strong activations for each channel on the R-FM, and
then sum pooling gets a 𝐶-dimensional global relation descriptor
𝐹R , which is formulated as:

𝐹R =

𝑁∑
𝑖=1

∑
𝐾𝑀𝑃 (𝑓R𝑖,1 , 𝑓R𝑖,2 , ..., 𝑓R𝑖,𝑁

) . (6)

At last the relation descriptor is ℓ2-normalized for training or testing.
The interpretation of our cascaded pooling is that we first select
salient relations for each object (region) and then sum-aggregate
all these relations to a global relation descriptor.

4.3 Composite matching assumption
Compared to the regional pooling methods [52, 63] that match
the similarity of region features 𝑓𝑟,𝑖 in two images as described in
Section 3.1, the matching of our regional relation features 𝑓R𝑖,𝑗

pro-
vides a composite matching assumption that two matching images
should have similar region pairs and the pair-wise relationships
should match accordingly. This new assumption is obviously more
reasonable for human common sense.

There are two reasons that we adopt the region features instead
of local CNN features to analogize the object features. First, region
features avoid the over-counting problem caused by the repetitive
architecture of buildings and show competitive performance in
image retrieval works [52, 63]. Second, adopting the local CNN
features for relation modeling gets a huge R-FM with size of 𝐻𝑊 ×
𝐻𝑊 ×𝐶 , which brings high memory and computation overheads,
especially for VPR datasets.

4.4 Training and testing
4.4.1 Training. The proposed regional relation module and cas-
caded pooling method are composed of differentiable operations.
Therefore our architecture is end-to-end trained on the Google
Street View training datasets with the weakly supervised triplet
loss [2], where the goal is to make the matching images closer and
the dis-matching images far from each other in the descriptor space.
Triplet loss has shown its effectiveness in many vision tasks such
as face identification [45] and image retrieval [15, 32]. Learning to
rank the positive and negative images in the triplets enables the
neural networks to produce discriminative descriptors.
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Given a query image 𝑞, we construct a training tuple (𝑞, 𝑝,
{
𝑛 𝑗

}
),

where 𝑝 is a positive image matching the query and
{
𝑛 𝑗

}
is a set

of negative images. The positive and negative images are selected
according to their GPS coordinate annotations, which provide weak
form of supervision. Detailed descriptions aboutmining the training
tuples can be found in [2]. The weakly supervised triplet ranking
loss is defined as follow:

𝐿(𝑞,𝑝,{𝑛 𝑗 }) =
∑
𝑗

𝑚𝑎𝑥 (0, 𝑑2
𝜃
(𝑞, 𝑝) +𝑚 − 𝑑2

𝜃
(𝑞, 𝑛 𝑗 )), (7)

where 𝑑2
𝜃
denotes the Euclidean distance in the descriptor space,

and𝑚 is a scalar representing the margin. When any of the
{
𝑛 𝑗

}
is

close to 𝑞 in the descriptor space, exceeding the margin compared
to the positive image, there is a loss to be back-propagated. In this
way, the proposed relation descriptor is optimized in an end-to-end
manner.

4.4.2 Testing. Since the proposed relation descriptors focus on dif-
ferent cues to traditional appearance descriptors, we found they are
complementary to each other. So we concatenate the appearance de-
scriptors with relation descriptors to get the combined descriptors,
which have large accuracy improvement. Specifically, we choose the
Pyramid Aggregation (PA) descriptors (directly sum-aggregating
the region features in Figure 2) as appearance descriptors because
they show better performance than the GMP or GAP descriptors
and can be obtained together with relation descriptors in a single
forward pass. It’s worth mentioning that optimizing the combined
descriptors end-to-end yields poorer performance, so we directly
optimize the relation descriptors. We also found regularizing PA
descriptors with the proposed regional relation module and cas-
caded pooling can effectively enhance their representative ability
compared to directly optimizing the PA descriptors. We will show
the performance of these three kinds of descriptors in Section 5.3.

5 EXPERIMENTS
In this section, we first introduce the experimental datasets, eval-
uation metric and implementation details. Then we give ablation
study about the proposed relation features and cascaded pooling
method. We also give qualitative analysis on the property of re-
gional features and compare with state-of-the-art works on place
recognition and image retrieval benchmarks. At last we combine
relation features with NetVLAD aggregation method and provide
comparative experiments.

5.1 Datasets
Our network architectures are trained on the Google Street View
training datasets [2] and evaluated on the Pitts250k-test and Tokyo
24/7 dataset, respectively. All the images in the datasets above are
of size 640 × 480 × 3 except the queries of Tokyo 24/7.

Google StreetView training datasets are composed of Pitts30k-
train and Tokyo Time Machine datasets (Tokyo TM), which are
sampled from Google Street View. Pitts30k-train contains 7k query
images and 10k database images. Tokyo TM contains 7k query
images and 49k database images sampled from different times in
Tokyo area.

Pitts250k-test is a subset of the Pittsburgh dataset [56] and con-
sists of around 83k database images and 8k query images generated
from the panoramas in Pittsburgh area.

Tokyo 24/7 [53] has 76k database images sampled from the
Google Street View and 315 query images taken from different
mobile phone cameras in Tokyo area. Tokyo 24/7 dataset is very
challenging because the streets are crowded in Tokyo area and
the query images were taken at daytime, sunset and night while
the database images were only taken at daytime. In Tokyo 24/7
dataset, there are less query images than the Pitts250k-test, so the
performances on Tokyo 24/7 are usually change dramatically as
shown in the following experiments.

Evaluation metric. For Pitts250k-test and Tokyo 24/7 dataset,
we use Recall@N as evaluation metric, which is similar to the
Rank-N accuracy in person re-identification [61]. A query image is
deemed correctly recognized if at least one of the top N candidate
images is within 25 meters from the ground truth GPS coordinates
of the query. We calculate the mean Recall@N for all queries. All
the images in the datasets above have spatial size of 640×480 except
the queries of Tokyo 24/7 and when testing we resize the larger
side of these queries to 640 while keeping the aspect ratio.

5.2 Implementation details
The pre-trained AlexNet [28] and VGGNet [48] are adopted as the
base models which are both cropped at the last convolutional layer,
before ReLU. We adopt pyramid pooling with 3-scale spatial grids
(2×2, 4×4, 6×6), where the region number𝑁 in equation 4 is 56. For
the MLP in relation module, we adopt a single convolutional layer
to get relational feature maps. We separately choose𝐾 = 3 and 8 for
Pitts250k and Tokyo 24/7 dataset because the scenes in Tokyo-24/7
dataset are more complex with more objects than Pitts250k-test.
In the training process, we use margin m = 0.1, momentum 0.9,
weight decay 0.001, batch size of 4 tuples, SGD with initial learning
rate 𝑙0 0.001 or 0.0005 for Pitts30k-train or Tokyo TM training set.
The learning rate is equal to 𝑙0 exp(−0.1(𝑖 − 1)), which is decayed
exponentially over epoch 𝑖 . Other hyper-parameters for training
are the same as NetVLAD [2]. We perform PCA power-whitening
for dimensionality reduction as in [63] and all the descriptors are ℓ2-
normalized for testing by default. All the descriptors for comparison
in this section are end-to-end optimized unless otherwise specified.

5.3 Ablation study
5.3.1 Relational Feature Maps. To demonstrate the advantage of
the relational feature maps (R-FM), we adopt two commonly used
aggregation methods (i.e. global max pooling (GMP) and global
average pooling (sum pooling)) on R-FM and convolutional feature
maps (C-FM) to get the global descriptors for place recognition.
As shown in the upper part of Table 1, R-FM usually perform
better than C-FM on both datasets, especially when sum pooling is
adopted. The reason is that R-FM contain high-level information
about objects and their relationships, thus the relation descriptors
are more discriminative. This demonstrates the benefits of our
regional relation module and relation descriptors.

5.3.2 Cascaded pooling. In the lower part of Table 1, we also show
the performance of our cascaded pooling method for aggregating
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Table 1: Comparison of C-FM and R-FM when different aggregation methods are adopted. All these methods are trained end-
to-end on the Pitts30k-train dataset. All these results are based on the VGGNet architecture. The best results are highlighted
in bold.

Method Feature maps Pitts250k-test Tokyo 24/7
Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

GMP C-FM 79.2 90.1 93.1 48.9 63.5 69.8
R-FM 81.7 91.3 93.8 47.6 64.4 74.0

Sum pooling C-FM 75.6 88.0 91.8 44.4 59.7 66.7
R-FM 82.0 91.3 94.0 55.9 72.4 75.6

Cascaded pooling (𝐾 = 1)

R-FM

83.9 92.4 94.9 56.5 71.4 77.5
Cascaded pooling (𝐾 = 3) 84.8 92.9 95.2 61.9 77.8 83.2
Cascaded pooling (𝐾 = 8) 84.5 92.7 94.9 67.3 80.6 85.1
Cascaded pooling (𝐾 = 15) 83.2 92.0 94.4 65.7 82.9 84.8

Table 2: Comparison of different kinds of relationmodeling
methods on Pitts250k-test using AlexNet and VGGNet archi-
tectures. PANet is the baseline method which directly sum-
aggregates the region feature set.

Method AlexNet VGGNet
𝐷𝑖𝑚 R@1 R@5 R@10 𝐷𝑖𝑚 R@1 R@5 R@10

PANet [63] 256 69.8 83.4 87.3 512 82.5 91.6 94.1
Similarity graph 512 70.2 84.5 88.5 1024 82.9 91.7 94.5
Spatial graph 512 70.4 84.3 88.0 1024 82.6 92.0 94.3
Ours 512 77.2 87.9 90.7 1024 84.8 92.9 95.2

the R-FM. As we can see, cascaded pooling consistently outper-
forms two commonly used global max pooling (GMP) and sum
pooling method on both datasets. The accuracy on Tokyo 24/7
dataset is largely increased as 𝐾 in the cascaded pooling increases
from 1 to 8, and drops lightly when 𝐾 = 15. And the performance
on Pitts250k-test is not so sensitive to 𝐾 . It is because the streets
are crowded in Tokyo 24/7 dataset and there are more objects in
an image than Pitts250k-test, so sum pooling preserve more useful
information than GMP and cascaded pooling further discards the
noisy information in the relational region features. In the latter
experiments, we choose 𝐾 = 3 and 𝐾 = 8 for Pitts250k-test and
Tokyo 24/7 dataset, respectively.

5.3.3 Comparing with other relation modeling blocks. Recently, the
Non-local block [57] and graph convolutional network (GCN) [25]
are widely adopted for relation modeling in various vision tasks.
We implement these two methods to model regional relation on
Pitts250k-test dataset. Having the region feature set fΩ with shape
of 𝑁 × 𝐷 , we adopt a general version of the Non-local and graph
convolutional function to model regional relation as follow:

f
′
Ω = 𝐺fΩ𝑊, (8)

where G is the 𝑁 ×𝑁 graph representing the connection of N region
features, W with shape of 𝐷 × 𝐷 is parameters to be optimized.
For the graph G, we construct a similarity graph (corresponding
to Non-local) and a spatial graph (corresponding to GCN) which

separately represent the appearance relation and spatial relation of
region features.

Similarity graph. The construction of similarity graph is sim-
ilar to [57, 58]. Having the region features fΩ = {𝑓𝑟,1, 𝑓𝑟,2, ...𝑓𝑟,𝑁 }
with shape of 𝑁 × 𝐷 , the pairwise similarity between every two
regions can be represented as

𝑆 (𝑓𝑟,𝑖 , 𝑓𝑟,𝑗 ) = 𝜙 (𝑓𝑟,𝑖 )𝑇𝜙
′
(𝑓𝑟, 𝑗 ), (9)

where 𝜙 (𝑥) = 𝑤𝑥 and 𝜙
′ (𝑥) = 𝑤 ′

𝑥 represent two different trans-
formations of the original features. In practice, they are separately
two 1 × 1 convolutional layers with parameter shape of 𝐷 × 𝐷 . All
the pair-wise similarity 𝑆 (𝑓𝑟,𝑖 , 𝑓𝑟, 𝑗 ) construct the 𝑁 ×𝑁 affinity ma-
trix, i.e. similarity graph. Each row of the affinity matrix is further
normalized with softmax function so that the sum of all the edge
values connected to one region 𝑖 will be 1.

Spatial graph. The construction of spatial graph is similar to
the spatial-temporal graph in [58]. Because we perform pyramid
pooling to get the region features, the spatial coordinate of each
region is known. The spatial coordinate (x, y, h, w) of a region
denotes the central position in X-axis, Y-axis and the height, width
of this region. Then we calculate the value of Intersection Over
Unions (IoUs) of all region pairs and thus construct the 𝑁 × 𝑁

spatial graph. So the minimum value is 0 and the maximum value
is 1 in the spatial graph. Each row of the spatial graph is further
𝐿1-normalized so that the sum of all the edge values connected to
one region 𝑖 will be 1.

After constructing the graph, we perform the graph convolution
operation in equation 8 and get the relational region feature set f

′
Ω.

In [57, 58], the graph convolution operation can be stacked several
times, but we found there is performance drop when stacking more
graph convolution layers. So we just perform the graph convolu-
tion operation once, then we fuse the original region features with
relational region feature and sum-aggregate the fused region fea-
tures to global descriptor. Specifically, we concatenate the region
features with the relational region features and get C-dimensional
(𝐶 = 2 ∗ 𝐷) global relation descriptor after sum-aggregation.

We compare our relation descriptor with these two methods in
Table 2. We can see that our method largely surpass the PANet
baseline while the similarity and spatial graph convolution oper-
ations are not so effective to enhance the discriminative ability
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(a) Query

(b) PA appearance

(c) Relation

(d) Combined

Figure 3: Retrieval examples. From top to bottom are the query images and Top-1 retrieval results of three kinds of descriptors,
which are based onAlexNet because the performance gaps are larger than that of VGGNet. Truematching ismarkedwith green
border while false matching is red.

of region features. We guess the reason is the receptive fields of
region features are larger than the whole image and they are usu-
ally overlapped, the concatenation of region features and relation
modeling in MLP can capture more statistical and dynamic relation
than message passing in the GCN.

5.3.4 Combining relation with appearance. As described in Sec-
tion 4.4, we choose the Pyramid Aggregation (PA) descriptors,
which are generated by sum-aggregating the region features, as
our appearance descriptors to form the combined descriptors with
relation descriptors. We compare four kinds of descriptors on two
datasets in Table 3 and Table 4, where “PANet” denotes the PA
descriptors which are end-to-end optimized as in [63], and they
can be considered as our baseline. “PA appearance” refers to the PA
descriptors in our architecture, they are regularized by regional re-
lation module and cascaded pooling and they form the “Combined”
descriptors with “Relation” descriptors.

The result comparisons in two tables can be summarized into
three observations. First, PA appearance descriptors outperform
the end-to-end optimized PANet descriptors using two base CNN
models, even they are just the outputs of an intermediate layer
in our architecture. This observation is more distinct on Tokyo
24/7 dataset and demonstrates that the appearance descriptors are
effectively improved when training with our regional relation mod-
ule. Second, relation descriptors are superior to the PA appearance
descriptors on Pitts250k-test dataset while are outperformed by
PA appearance descriptors on Tokyo 24/7 dataset using AlexNet

Table 3: Comparison of different kinds of descriptors on
Pitts250k-test dataset using AlexNet and VGGNet architec-
tures. DR denotes dimension reduction.

Method AlexNet VGGNet
𝐷𝑖𝑚 R@1 R@5 R@10 𝐷𝑖𝑚 R@1 R@5 R@10

PANet [63] 256 69.8 83.4 87.3 512 82.5 91.6 94.1
PA appearance 256 70.5 83.8 87.6 512 82.6 92.2 94.6
Relation 512 77.2 87.9 90.7 1024 84.8 92.9 95.2
Combined 768 79.3 89.4 92.2 1536 86.1 93.6 95.7
Combined (DR) 256 75.7 87.9 90.8 512 84.6 93.2 95.4

Table 4: Comparison of different kinds of descriptors on
Tokyo 24/7 dataset using AlexNet and VGGNet architectures.
DR denotes dimension reduction.

Method AlexNet VGGNet
𝐷𝑖𝑚 R@1 R@5 R@10 𝐷𝑖𝑚 R@1 R@5 R@10

PANet [63] 256 36.5 51.1 57.5 512 56.5 68.3 74.3
PA appearance 256 39.4 56.8 66.0 512 65.1 81.0 86.7
Relation 512 37.5 52.1 57.1 1024 67.3 80.6 85.1
Combined 768 47.0 56.2 63.5 1536 72.7 84.1 88.3
Combined (DR) 256 40.3 52.7 62.2 512 68.3 82.2 87.6

architecture. We conjecture this is because there are more confus-
ing objects (pedestrians and cars) on the Tokyo 24/7 dataset than
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Table 5: Comparison with state-of-the-art methods. All these methods are based on VGGNet architecture. The best results are
highlighted in red and best results in 512-d are highlighted in blue.

Method 𝐷𝑖𝑚
Pitts250k-test Tokyo 24/7 Tokyo 24/7 sunset/night

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
NetVLAD [2] 4096 86.0 93.2 95.1 71.8 82.5 86.4 61.4 75.7 81.0
CRN [24] 4096 85.5 93.5 95.5 75.2 83.8 87.3 66.7 76.7 81.9
NetVLAD [2] 1536 84.3 92.7 94.5 67.3 77.8 82.5 56.7 68.1 74.8
Our combined 1536 86.1 93.6 95.7 72.7 84.1 88.3 62.9 77.6 83.3
NetVLAD [2] 512 80.7 90.9 93.1 60.0 73.7 79.1 45.7 63.3 70.0
APANet [63] 512 83.7 92.6 94.7 67.0 81.0 83.8 57.1 74.8 78.6
Our combined 512 84.6 93.2 95.4 68.3 82.2 87.6 57.1 74.8 82.4

Pitts250k-test, and the appearance descriptors are usually more
robust to the confusing objects. Even so, the relation descriptors
still perform better than the baseline. Third, when concatenating
the PA appearance and relation descriptors together, the combined
descriptors show large performance improvements and still per-
form well after dimensionality reduction. It can be explained that
appearance and relation descriptors focus on different cues in a
place, so they complement each other for place recognition.

5.4 Qualitative analysis
In Figure 3, we show some representative retrieval results of the
relation, PA appearance and combined descriptors. From these re-
trieval results, we have several observations to conclude. First, the
PA appearance descriptors show translation invariance inherited
from the convolution features and the orderless aggregationmethod.
They show invariance to viewpoint changes (Column 1) but per-
form not so well on illumination or appearance changes (Column 2,
4). Second, the relation descriptors focus more on the spatial layout.
The retrieval results of relation descriptors usually have less view-
point changes (Column 3), and show invariance to the changes of
appearance (Column 2). But the relation descriptors prone to be
influenced by the confusing objects (Column 5). Third, combining
the advantages of both descriptors, the combined descriptors take
object appearance and object relations into consideration and get
more reliable results.

5.5 Compared to state-of-the-art
Recently, NetVLAD-based deep descriptors [2, 24] have shown
state-of-the-art performance on place recognition benchmarks and
APANet descriptors [63] perform pretty well at low dimensionality.
We compare our combined descriptors with these methods in Ta-
ble 5. For Pitts250k-test dataset, our combined descriptors surpasses
NetVLAD-based descriptors with approximately 3-times shorter de-
scriptors. For Tokyo 24/7 dataset, our method is surpassed by CRN
on Recall@1. The reason is CRN did additional data augmentation
on the illumination conditions (two thirds of the queries in Tokyo
24/7 dataset were taken at sunset and night time) and three-clip
testing, so it is unfair to compare CRN with other works. Even

Table 6: Comparisons of different methods on image re-
trieval datasets. The accuracy is measured by mean average
precision (mAP) and all the results are on the basis of VGG-
16 architecture, single-scale image descriptors.

Method 𝐷𝑖𝑚 Oxford Paris Holidays
NetVLAD [2] 4096 71.6 79.7 87.5
CRN [24] 4096 69.2 - -
APANet [63] 512 77.9 83.5 -
PA appearance 512 77.9 84.9 88.8
Relation 1024 75.0 81.3 86.3
Combined 1536 76.8 83.6 88.9

so, we still achieve best performance on Recall@5 and Recall@10.
We can observe that for the lower dimensionality, the combined
descriptors still outperform the NetVLAD and APnet descriptors
on both datasets.

Note that our method has broad room for further improvements
because it is compatible with other three competitors. We can adopt
NetVLAD as a powerful aggregationmethod to aggregate theR-FM,
and we provide tentative experimental results in Section 5.7. We
can also adopt the attention block of APANet or CRN to discover
salient regions and region-pairs, and this is left for our future work.

5.6 Image retrieval
To show the generalization ability of our method, we deploy the
trained model (trained on Pitts30k-train dataset) on three stan-
dard image retrieval datasets: the Oxford 5k [38], Paris 6k [39] and
Holidays [20], and show the results in Table 6. It is clear that our
PA appearance and combined descriptors get best results on three
datasets, and the relation descriptors are consistently exceeded by
PA appearance descriptors on these datasets. The interpretation is
that query images in the image retrieval datasets usually contain
only one object, so the assumption of modeling object relation de-
grades to the relation modeling of object parts. Relation descriptors
seem to be not so effective in these simple scenes, but they still
perform better than the NetVLAD-based descriptors. We can also
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Figure 4: Comparisons of NetVLAD and RelationVLAD de-
scriptors. The dimensionality is followed.

find our PA appearance descriptors exceed APANet descriptors,
which additionally adopt attention block on the region features and
are end-to-end optimized. This observation proves once again that
training with our regional relation module effectively enhances
the appearance descriptors. It is worth noting that on the Holidays
dataset, PA appearance descriptors even surpass the state-of-the-
art image retrieval works such as GeM (87.3) [40] and DIR (88.7)
[15] under similar configurations (512-d VGGNet descriptors, with-
out spatial re-ranking or query expansion). Here we don’t include
the results of the best image retrieval works [40, 42] because our
model is trained on the street-view images and these works are
trained on the landmark images, while the image retrieval datasets
are landmark-centered. So we just fairly compare with the models
trained on the street-view images to demonstrate the generalization
ability of our method.

5.7 RelationVLAD
In this subsection, we provide tentative experiments that combine
R-FM with the VLAD [2, 21] aggregation method. Specifically, after
converting theC-FM toR-FM by regional relationmodule, we adopt
NetVLAD as a powerful aggregation method to get global relation
descriptors and we call them “RelationVLAD”. Note that end-to-end
optimizing the RelationVLAD descriptors gets poor performance in
our implementation. So we first optimize the relation descriptors as
illustrated in Figure 2, then we replace the cascaded pooling module
of the trained models with NetVLAD layer for aggregation. In this
way we get relationVLAD descriptors with pretty good results,
and we don’t perform further optimization because this gets few
improvements.

In figure 4 we compare RelationVLAD with NetVLAD descrip-
tors which are generated by aggregating the local convolutional
features. As can be seen, RelationVLAD descriptors consistently
outperform NetVLAD descriptors on Pitts250k-test datasets but
perform similarly with NetVLAD on Tokyo 24/7 dataset. We con-
jecture it is because relation features are prone to be influenced
by the confused objects which are common in the streets of Tokyo
area. It is worth mentioning that RelationVLAD descriptors usually
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Figure 5: Comparisons of NetVLAD-based and pooling-
based descriptors about accuracy and dimensionality.

perform better when the top database candidates 𝑁 gets larger,
which demonstrates the benefits of the relation features.

Since the NetVLAD-based and pooling-based aggregation meth-
ods get descriptors with different dimensions, we show the Re-
call@5 accuracies of these methods in various dimensions for fair
comparison in Figure 5. It can be seen that the pooling-based meth-
ods usually perform better for both datasets in the same dimensions,
especially in lower dimensions. On Pitts250k-test dataset, Relation-
VLAD descriptors perform best when the dimensionality is larger
than 1024 but are surpassed by the pooling-based methods in lower
dimensions. Our combined descriptors perform better than APANet
on Pitts250k-test dataset but are exceeded on Tokyo 24/7 in lower
dimensions.

6 CONCLUSION AND FUTUREWORK
In this paper, we consider the visual relationships as important cues
for visual place recognition. We propose a regional relation module
which imitates the relation modeling process of visual relationship
modeling framework and converts the C-FM to R-FM. The R-FM
contain rich information about objects and object relations. We
further design a cascaded pooling method to effectively aggregate
the R-FM. Experiment evaluations demonstrate the effectiveness of
our contribution and the properties of relation features. Potential
improvements could include the use of attentional mechanisms to
explore salient regions and regional pairs, as well as generalizing
our approach to single-object image retrieval dataset. Furthermore,
our method has extensive connections with the visual relation
detection, visual question answering, self-supervised learning tasks
and we will reference their successful efforts in the future works.
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